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Abstract

Identification of low order equivalent system dynamic models from flight test data was

studied.  Inputs were pilot control deflections, and outputs were aircraft responses, so the models

characterized the total aircraft response including bare airframe and flight control system.

Theoretical investigations were conducted and related to results found in the literature.  Low

order equivalent system modeling techniques using output error and equation error parameter

estimation in the frequency domain were developed and validated on simulation data.  It was

found that some common difficulties encountered in identifying closed loop low order equivalent

system models from flight test data could be overcome using the developed techniques.

Implications for data requirements and experiment design were discussed.  The developed

methods were demonstrated using realistic simulation cases, then applied to closed loop flight

test data from the NASA F-18 High Alpha Research Vehicle.
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Nomenclature

az body axis vertical acceleration, g

c mean aerodynamic chord, ft

c.g. center of gravity

C parameter covariance matrix

E ¼; @ expected value

e equation error, or base of natural logarithm

FQ flying qualities

g gravitational acceleration = 32.174 ft/sec2

HARV High Alpha Research Vehicle

j imaginary number = −1

J cost function

K&θ gain for short period ~ ~q eη  transfer function

L aerodynamic lift force, lbf

L, M, N aerodynamic roll, pitch, and yaw moments, ft-lbf

LOES Low Order Equivalent System

m number of discrete frequencies

np number of elements in parameter vector θ

N number of data points in the time domain

p, q, r roll, pitch, and yaw rates, rad/sec

P power spectral density

q dynamic pressure, lbf/ft2

Re real part of a complex number

s Laplace transform variable

See equation error covariance matrix

Sνν output error covariance matrix
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t time, sec

T data record length, sec

TR roll mode time constant

TS spiral mode time constant

1 Tθ 2
numerator zero parameter for short period ~ ~q eη  transfer function

v output error

V airspeed, ft/sec

w weight, lbf

xcg longitudinal center of gravity position, in

y model output

Y aerodynamic side force, lbf

z measured output

α angle of attack, rad

β sideslip angle, rad

∆ t sampling interval, sec

φ roll angle, rad

ϕ Bode plot phase angle, deg

ηa lateral stick deflection, in

ηe longitudinal stick deflection, in

ηr rudder pedal force, lbf

ν i1 6 noise vector at time i t−11 6∆
θ parameter vector

Θ pitch angle, rad

σ 2 variance

τ time delay, sec

τ e longitudinal stick equivalent time delay, sec
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τ a lateral stick equivalent time delay, sec

τ r rudder pedal equivalent time delay, sec

ω frequency, rad/sec

ω DR dutch roll natural frequency, rad/sec

ω sp short period natural frequency, rad/sec

ζ DR dutch roll damping ratio

ζ sp short period damping ratio

  absolute value or modulus of a complex number

SUPERSCRIPTS

T transpose

† complex conjugate transpose

$ estimate

~ Laplace or Fourier transform

& time derivative

–1 matrix inverse

SUBSCRIPTS

avg average

E measured value from experiment

EE equation error

hos high order system

LOES low order equivalent system

LS least squares

OE output error

o nominal or trim value
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I.  Introduction

Many aircraft employ automatic flight control systems that include significant dynamics

attributable to the control law implementation, artificial feel systems, sensors, filters, and

actuators.  The complexity of these control systems results from the desire for improved

performance and control over expanded flight envelopes, and from the ability to implement

lengthy calculations onboard the airplane in real time with small and fast flight control

computers.

Current flying qualities criteria and military specifications are based primarily on data from

unaugmented aircraft with classical dynamic responses.  For linearized longitudinal dynamics,

the classical dynamic response is comprised of two damped oscillatory modes called the phugoid

(long period) mode and the short period mode.  To apply the large body of information acquired

for unaugmented airplanes to airplanes whose dynamics are no longer classical because of

additional dynamics from the control system, the concept of a Low Order Equivalent System

(LOES) model was introduced1-3.  The LOES model has the same form as the model for an open

loop unaugmented airplane with classical dynamic modes, except the inputs are pilot controls

with equivalent time delays, instead of control surface deflections.  The equivalent time delay

was introduced to account for time delay resulting from the digital control system

implementation (e.g., sampling delay), and the phase lag at high frequency from control system

dynamics and various nonlinearities, such as control surface rate limiting.

The LOES model characterizes the linearized dynamic closed loop response of the airframe

and control system as it appears to the pilot.  If the closed loop response of an augmented

airplane to pilot inputs can be accurately characterized using a LOES model, then specifications

for classical unaugmented aircraft parameters found in the current Military Specification for

Flying Qualities of Piloted Airplanes1 (hereafter called the Mil-Spec) can be applied directly to

the estimated parameters from a LOES model.  The Mil-Spec quantifies the relationship between

parameter values in a low order dynamic model and pilot opinion as measured by flying qualities

levels1, which are based on pilot Cooper-Harper ratings4.

Many flight test research programs5-14 have demonstrated that the LOES concept can be

used to correlate pilot flying qualities levels with augmented aircraft dynamic response that is in
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reality high order and nonlinear.  LOES models of the aircraft dynamic response are fit over the

frequency band corresponding to typical pilot inputs, 0.1 – 10 rad/sec.  Parameters from LOES

models can then be used with flying qualities specifications for classical low order model

parameters in the Mil-Spec to quantify and analyze flying qualities.  The Mil-Spec also

documents the strong effect of time delay on Cooper-Harper ratings and includes specifications

relating flying qualities levels and time delay.  Time delay is an important parameter, and is

estimated as part of the closed loop LOES model.

LOES models identified from flight test data are also useful for validating linear control law

designs, since the LOES model represents the achieved linearized closed loop dynamics of the

aircraft.  LOES models can also be used for rudimentary simulation in the limited flight envelope

where the model is valid.

This work focused on identifying accurate low order equivalent system models for the

closed loop dynamics of augmented aircraft, based on measured flight test data.  The methods

can be applied to identify LOES models using data from typical flying qualities evaluation

maneuvers such as tracking or landing tasks, and do not require specific system identification

maneuvers like frequency sweeps.  A quantitative model of the closed loop aircraft response can

be identified using data from the same maneuver the pilot used to rate the flying qualities.  Such

information is useful for flying qualities research and aircraft development.  The techniques

described in this work address practical LOES modeling problems such as identifiability of

model parameters, limited data, frequency resolution, and variable model fidelity requirements

over the pilot input frequency range.

The next section includes theory and related investigations.  Next, simulation examples

were used to demonstrate proposed approaches for accurate LOES modeling from measured

data.  Finally, the modeling techniques were applied to data from flight test maneuvers of the

NASA F-18 High Alpha Research Vehicle (HARV).
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II.  Theory

MODEL FORMS

The model structure for LOES modeling is fixed a priori to correspond to classical linear

aircraft dynamic response with an input time delay.  For the short period longitudinal dynamic

mode, the closed loop pitch rate response to longitudinal stick deflection is modeled in transfer

function form as1

~
~

&q K s T e

s se

s

sp sp sp

e

η ζ ω ω
θ θ

τ
=

+

+ +

−1

2

2

2 2

3 8
3 8 

(1)

The equivalent input time delay τe is included to account for additional phase lag from high

order control system dynamics, nonlinearities, and sampling delay.  The current Mil-Spec1

correlates pilot opinion (via flying qualities levels) with ranges of values for all model

parameters in Eq. (1) except K&θ .  If a LOES model can be identified that approximates the

closed-loop dynamic response over the bandwidth of the pilot, then the resulting estimated

parameters can be used in conjunction with the Mil-Spec to quantify flying qualities.

The problem addressed in this work is accurate estimation of the model parameters in

Eq. (1) using measured input-output flight test data.  The idea is to match the measured outputs

or output time derivatives with the corresponding quantities from the model by adjusting the

model parameters to minimize a measure of fit error, usually the sum of the squared deviations

between model quantity and measured quantity.  Several methods exist for estimating model

parameters based on measured data, both in the time domain15,16 and the frequency domain17-19.

One problem with the model parameterization in Eq. (1) is that the role of the gain

~ ~q seη  with = 01 6  is not isolated to a single parameter, since the gain is K Tsp&θ θω 2
2

.  Movement

of K Tsp&

, ,θ θω or 
2

 can account for changes in the gain when a parameter estimation algorithm

adjusts the free parameters to match measured data.  In such cases, the parameters are said to be
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correlated.  Parameters Tθ2
 and ω sp  have other roles as well.  Parameter Tθ2

 is the negative

inverse of the numerator root, and ω sp  is the natural frequency for the denominator quadratic

factor.  These roles only become apparent at frequencies near or above 1
2

Tθ  or ω sp .  If most of

the measured data resides at low frequencies relative to 1 Tθ 2
 and ω sp , the parameters

K Tsp&

, ,θ θω and 
2

 will be highly correlated, and the estimates of these parameters will be

indeterminate.  The parameter estimation algorithm, given only low frequency data, cannot

determine which parameter to move to account for the gain, since movement of K Tsp&

, ,θ θω or 
2

could be used to achieve a given gain.

Some improvement in the parameter correlation situation can be achieved by

re-parameterizing the model in Eq. (1) as

~
~
q b s b e

s a s ae

s

η

τ
=

+

+ +

−
1 0

2
1 0

1 6
3 8 

(2)

or

~
~
q b s b e

a s a se

s

η

τ
=

+

+ +

−
1 0

2
2

1 1

1 6
3 8 

(3)

The gain involves fewer parameters in Eqs. (2) and (3), which mitigates parameter correlations at

low frequency.  The relationship among the parameters in Eqs (1)-(3) can be determined by

straightforward comparison.  For example, the parameters in Eqs. (1) and (2) are related by:

b K b K T

a a

e

sp sp sp

1 0

1 0
2

2

2

= = =

= =

& &θ θ θ τ τ

ζ ω ω
(4)
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or

K b T b b

a a a

e

sp sp

&θ θ τ τ

ζ ω

= = =

= =

1 1 0

1 0 0

2

23 8
(5)

Other model parameterizations are possible, such as

~
~
q b s b e

s se

s

sp sp sp
η ζ ω ω

τ
=

+

+ +

−
1 0

2 22

1 6
3 8 

(6)

and

~
~
q

K
T s e

s
s

e

s

sp

sp

sp

η

ω
ζ

ω

θ
τ

=
+

+ +
�
��

�
��

−
2

1

2
1

2

2

3 8
 

(7)

The LOES model can also be formulated as a state space model.  Using the short period

approximation from classical airplane dynamics20, with the understanding that the stability and

control derivatives include the effects of bare airframe plus control system, the LOES model can

be written in state space form:

1 0

1

1

−
�
! 

"
$#
�
! 

"
$# =

− −�
! 

"
$#
�
! 

"
$# +

−�
! 

"
$#

−
M q

L L

M M q

L

M
t

q

q
e

e

e&

&

&α

α

α

η

η

α α
η τ1 6 (8)

Assuming Lq ≈ 0  for low angles of attack, and assuming L
eη ≈ 0 , which is typical,

1 0

1

1 0

−
�
! 

"
$#
�
! 

"
$# =

−�
! 

"
$#
�
! 

"
$# +

�
! 

"
$#

−
M q

L

M M q M
t

q
e

e&

&

&α

α

α η

α α
η τ1 6 (9)
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Since &α αα= − +L q , the M &α  effects can be subsumed into Mα  and Mq ,

&

&

α α
η τα

α ηq

L

M M q M
t

q
e

e

�
! 

"
$# =

−�
! 

"
$#
�
! 

"
$# +

�
! 

"
$#

−
1 0 1 6 (10)

Applying the Laplace transform with zero initial conditions,

s

sq

L

M M q M
e

q
e

s

e

~

~

~

~
~α α
ηα

α η
τ�

! 
"
$# =

−�
! 

"
$#
�
! 

"
$# +

�
! 

"
$#

−
1 0

(11)

or

s L

M s M q M
e

q
e

s

e

+ −
− −

�
! 

"
$#
�
! 

"
$# =

�
! 

"
$#

−α

α η
τα

η
1 0~

~
~ (12)

Solving for the ~ ~α ηe  and ~ ~q eη  transfer functions,

~

~
α
η

η
τ

α α αe

s

q q

M e

s L M s M L M
e=

+ − − +

−

2 3 8 3 8 (13)

~
~
q M s L e

s L M s M L Me

s

q q

e

η
η α

τ

α α α
=

+

+ − − +

−1 6
3 8 3 82

(14)

Comparing Eqs. (14) and (2),

b M b M L

a L M a M L M

e eo

q q

1

1 0

= = =

= − = − +

η η α

α α α

τ τ

3 8
(15)
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or

M b L b b

M
b a b

b
M

b

b

b a b

b
a

e

q

η α

α

τ τ= = =

= − = − −�
��

�
�� −

1 0 1

0 1 1

1

0

1

0 1 1

1
0

(16)

Each of the ~ ~q eη  model forms contains five unknown parameters, but the identifiability of

the model parameters will be different, as will be discussed further below.

Any of the ~ ~q eη  models given above could also be expressed in the time domain.  For

example, the time domain version of Eq. (2) is

&& &q t a q t a q t b t b te e1 6 1 6 1 6 1 6 1 6+ + = − + −1 0 1 0η τ η τ (17)

Estimating the equivalent time delay parameter τ in the time domain is problematic because

flight test data is collected at regular sampling intervals ∆t , so interpolation of the measured

input data is required to implement a value of τ which is not equal to an integer number of

sampling intervals.  If values of τ are restricted to integer multiples of ∆t , resolution of the τ

estimate is coarse and convergence problems can occur.  These problems can be avoided by

analyzing the data in the frequency domain.

In the frequency domain, the time delay parameter is a continuous parameter like all the

others.  Data analysis in the frequency domain requires Fourier transformation of the measured

data.  The transformation can be carried out with high accuracy by applying straightforward

corrections to the discrete Fourier transform21.  With corrections, the accuracy of the conversion

from the time domain to the frequency domain is on the order of the computing machine

precision.  The Fourier transform technique in Ref. [21] can use arbitrary and selectable

frequency range and resolution, independent of the time length of the data record.  The transform

can therefore be limited to specific frequency bands, such as the frequency range of pilot inputs

or a frequency band around the expected crossover frequency.  This brings about a natural

filtering of wide band noise from the data via the Fourier transformation alone, because of the
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limited frequency band used for the transformation.  At the same time, the number of data points

in the frequency domain can be kept small, which improves computational speed and efficiency

in the modeling process.  With selectable frequency range and resolution, very fine data features

in the frequency domain can be included in the data analysis.

LOES models for closed loop lateral/directional dynamics can be formulated similarly,

although the order of these models is different in some cases.  Most of this report will deal with

identifying the LOES model for closed loop short period longitudinal dynamics.

Lateral/directional LOES modeling is demonstrated in one of the flight test data examples.

PARAMETER ESTIMATION METHODS

The standard procedure for identifying LOES models from measured flight test data is to

use spectral estimates to identify a non-parametric frequency response in the form of a Bode plot,

followed by a least squares fit of a parametric model like Eq. (1) to the Bode plot data19,22,23.

There are some problems with this approach, including the need to calculate accurate spectral

estimates from the data, the consequent requirement for long test times or repeated maneuvers,

problems associated with computing ratios of spectral estimates for generating the Bode plot, and

data windowing issues19,22,23.

Output Error in the Frequency Domain

An alternate approach is to use the LOES model of Eq. (2) in either an output error or an

equation error formulation in the frequency domain, which avoids spectral estimation altogether.

Substituting s j= ω  in Eq. (2) to go from the Laplace transform to the Fourier transform,

~ ~q
b j b

a j a
ee

j=
+

− + +
−1 0

2
1 0

ω

ω ω
η ωτ1 6

3 8 
(18)

For output error, the parameters are adjusted so that the sum of squared output errors over

the m frequencies used in the Fourier transformation,
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J q qOE i i
i

m

i
i

m

E= - = =
= =
Ê Ê1

2

1

2

1

2

2

1

2

1

~ ~$ ~ ~ ~†ν ν ν3 8 (19)

is minimized.  The quantity ~$qi  is computed from Eq. (18) using estimated parameter values

$ , $ , $ , $ , $b b a a1 0 1 0  and τ , along with measured ~ηei
.  This is a nonlinear estimation problem because

the equivalent time delay parameter appears in the exponent of e j− ωτ , and because model

parameters a a1 0 and  appear in the denominator of the expression for ~q .  The output error

parameter estimation problem can be solved using a nonlinear estimation routine like the simplex

method, modified Newton-Raphson, or Levenberg-Marquardt24.

For modified Newton-Raphson, steps toward the solution are given by

$ $ $θ θ θk k+ = +1 D (20)

where k denotes the current step, $θ  is the vector of model parameter estimates, and

∆ $ Re
~ ~

Re
~

~θ
θ θ θ

= ∂
∂

�
��

�
��

∂
∂

�
��

�
��

%
&K
'K

(
)K
*K

�
!
  

"
$
##

∂
∂

�
��

�
��

%
&K
'K

(
)K
*K=

−

=
∑ ∑q q qi i

i

m
i

i
i

m† †

1

1

1

ν (21)

The quantities � �~qi θ  and ~ν i  are computed based on $θ k .  The estimated parameter covariance

matrix is

C $ $ $ Re
~ ~

θ θ θ θ θ
θ θ4 9 4 94 9≡ − −%&'

()* = ∂
∂

�
��

�
��

∂
∂

�
��

�
��

%
&K
'K

(
)K
*K

�
!
  

"
$
##=

−

∑E
q qT i i

i

m

σ 2

1

1
†

(22)

where σ 2  is estimated by
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$ ~σ ν2 2

1

1 2=
−

=
−=

∑m n m n
J

p
i

i

m

p
OE (23)

and np  is the number of model parameters.

For multiple outputs, the cost consists of a normalized sum of the individual output errors in

the frequency domain.  If the measured output vector in the frequency domain at the ith

frequency is denoted by ~zi  and the corresponding model output vector in the frequency domain

is ~yi , then the output error cost function is

JOE i i i i
i

m

i i
i

m

= − − =−

=

−

=
∑ ∑1

2

1

2
1

1

1

1

~ ~ ~ ~ ~ ~z y S z y S3 8 3 8† †
νν ννν ν (24)

where Sνν  is a weighting matrix estimated by

$ ~ ~Sνν ν ν=
=
∑1

1m i
i

m

i
† (25)

For modified Newton-Raphson, steps toward the solution are given by

$ $ $θ θ θk k+ = +1 ∆ (26)

where k denotes the current step and

∆ $ Re
~ ~

Re
~

~θ
θ θ θ

ννν νν= ∂
∂

�
��

�
��

∂
∂

�
��

�
��

%
&K
'K

(
)K
*K

�
!
  

"
$
##

∂
∂

�
��

�
��

%
&K
'K

(
)K
*K

−

=

−

−

=
∑ ∑y

S
y y

Si i

i

m
i

i
i

m† †
1

1

1

1

1

(27)
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The estimated parameter covariance matrix is

C
y

S
y$ $ $ Re

~ ~
θ θ θ θ θ

θ θνν4 9 4 94 9≡ − −%&'
()* = ∂

∂
�
��

�
��

∂
∂

�
��

�
��

%
&K
'K

(
)K
*K

�
!
  

"
$
##

−

=

−

∑E
T i i

i

m †
1

1

1

(28)

Equation Error in the Frequency Domain

For the equation error formulation, Eq. (2) with s j= ω  is written as

− + + = +− −ω ω ω η ηωτ ωτ2
1 0 1 0

~ ~ ~ ~ ~q a j q a q b j e b ee
j

e
j (29)

or

− = + − −− −ω ω η η ωωτ ωτ2
1 0 1 0

~ ~ ~ ~ ~q b j e b e a j q a qe
j

e
j (30)

Parameters are adjusted so that the sum of squared equation errors over the m frequencies

used in the Fourier transformation,

J q q q q eEE i i i i
i

m

i i i
i

m

i
i

m

E E= - = - =
= = =
Ê Ê Ê1

2

1

2

1

2
2 2

2

1

2
2

1

2

1

ω ω ω~ ~$ ~ ~$ ~4 9 4 9 (31)

is minimized.  The quantity ω i iq2~$  is computed from Eq. (30) using estimated parameter values

$ , $ , $ , $ , $b b a a1 0 1 0  and τ , as well as measured values for ~qi  and ~ηei
.  Eq. (31) shows that the

equation error cost function includes frequency weighting on the differences ~ ~$q qEi i−4 9 .  It is

possible to reformulate the equation error problem or re-parameterize the model so that the

frequency weighting is milder or non-existent.  For example, Eq. (30) could be divided through

by jω  or −ω 2 , for non-zero ω .  If the model form of Eq. (3) is used in the equation error
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formulation, the frequency weighting disappears.  All of these approaches were investigated

using simulation data.  It was found that the equation error formulation given in Eqs. (30) and

(31) was the most accurate and robust overall, compared to other model parameterizations and

frequency weightings.  This judgment was based on the particular simulation cases studied, and

may not be true in general.

The equation error formulation results in a nonlinear estimation problem, because the

equivalent time delay parameter appears in the exponent of e j− ωτ .  The equation error

parameter estimation problem can be solved using a nonlinear estimation routine like the simplex

method, modified Newton-Raphson, or Levenberg-Marquardt24.  If the time delay parameter τ

is fixed, τ τ= 0 , the problem becomes a linear parameter estimation problem involving complex

numbers.  Denoting the measured pitch rate and longitudinal stick deflection Fourier transforms

by ~q  and ~ηe  (i.e., omitting the E subscript to simplify the notation),

Y X e= +θ (32)

where

Y = − − −ω ω ω1
2

1 2
2

2
2~ ~ ~q q qm m

T
K (33)
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− −

− −

�

!

     

"

$

#####

− −

− −

− −

j e e j q q

j e e j q q

j e e j q q

e
j

e
j

e
j

e
j

m e
j

e
j

m m mm
m

m
m

ω η η ω
ω η η ω

ω η η ω

ω τ ω τ

ω τ ω τ

ω τ ω τ

1 1 1 1

2 2 2 2

1
1 0

1
1 0

2
2 0

2
2 0

0
1

0

~ ~ ~ ~

~ ~ ~ ~

~ ~ ~ ~
M M M M

(34)

θ = b b a a
T

1 0 1 0 (35)
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e = ~ ~ ~e e em
T

1 2 K (36)

The solution is17

$ Re Reθ =
−

X X X YT T= B = B1
(37)

and the estimated parameter covariance matrix is

C X X$ $ $ Reθ θ θ θ θ4 9 4 94 9 = B= - -%&'
()* =

-
E

T Tσ 2
1

(38)

where σ 2  is estimated from

$ ~$ $ $σ 2 2

1

1 2 1=
-

=
-

=
-

=

Ê
m n

e
m n

J
m np

i
i

m

p
EE

p
e e† (39)

and np  is the number of elements in the parameter vector θ.  The estimated vector of equation

errors $e  is computed using Eq. (32) and the estimated parameter values from Eq. (37).

Since the time delay is a small bounded positive number, 0 0500≤ ≤τ .  sec , the equation

error cost function in Eq. (31) can be minimized by first fixing τ τ= 0 , where τ 0  is an initial

guess for the time delay.  With τ  fixed at τ 0 , the linear parameter estimation problem outlined

above can be solved in a single step using Eq. (37).  Then the τ  parameter can be found by

minimizing the cost via a line search on τ  in the range 0 0500≤ ≤τ .  sec , while holding the other

parameters fixed at the values found from the linear parameter estimation solution for fixed

τ τ= 0 .  Linear parameter estimation with fixed τ is alternated with a line search on τ  with the

other parameters fixed until all the parameters converge.  This method can be classified as a

relaxation method, and was found to be very fast and accurate.  All Single-Input, Single-Output

(SISO) LOES model parameters estimated using the equation error formulation were found using

this relaxation optimization method.
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For airplane problems, typically the states are also measured outputs. If a state space

parameterization is used, then equation error in the frequency domain can be formulated using

the first time derivatives of the states.  For multiple state equations, denoting the measured state

vector for the ith frequency as ~zi , and the equation error cost function is

J j j j jEE i i i i i i i i
i

m

i i
i

m

= − − =−

=

−

=
∑ ∑1

2

1

2
1

1

1

1

ω ω ω ω~ ~ ~ ~ ~ ~z y S z y e S eee ee3 8 3 8 4 9† † (40)

where See  is a weighting matrix estimated by

$ ~ ~S e eee =
− =

∑1

1m np
i

i

m

i
† (41)

In this case, higher frequencies are weighted more heavily in the parameter estimation cost

function due to the multiplication of each term by j iω .  Each equation in the state space model

contains a subset of the unknown parameters, and each parameter appears in only one equation.

An example of this can be seen in Eq. (11).  The result is an increased ratio of information to

unknown parameters for each equation, which improves the parameter estimation.

If a transfer function parameterization were used with multiple outputs in the equation error

formulation, each equation would include a larger subset of the unknown parameters, because all

the denominator parameters appear in every equation.  In addition, the equation error parameter

estimation would be coupled, because the same denominator parameters appear in every

equation.
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PARAMETER CORRELATION ANALYSIS

Output Error

Output error parameter correlations can be diagnosed by examining the sensitivities, which

are partial derivatives of the model output with respect to the parameters.  Eq. (21) shows that

the sensitivities direct the parameter update steps in Newton-Raphson optimization, and Eq. (22)

shows that the sensitivities are important in determining the estimated parameter covariance

matrix.

Considering Eq. (2) with s j= ω  to examine frequency response, the sensitivities of output

~q  to parameters b b a a1 0 1 0, , , ,  and τ are:

∂
∂

=
− + +

−~ ~q

b

j e

j a a

e
j

1 2
1 0

ω η

ω ω

ωτ

3 8 
(42)

∂
∂

=
− + +

−~ ~q

b

e

j a a

e
j

0 2
1 0

η

ω ω

ωτ

3 8 
(43)

∂
∂

= −
+

− + +
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a

j j b b e
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e
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2
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∂
∂

= −
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− + +

−~ ~q j j b b e

j a a

e
j

τ
ω ω η

ω ω

ωτ
1 0

2
1 0

1 6
3 8 

(46)

Equations (42)-(46) show that the sensitivities depend on the parameter values, frequency,

and the spectral content of the input ~ηe .  The sensitivities are complex quantities, which can be

characterized by magnitude and phase as a function of frequency for given parameter values and

a given input.  Note also that the sensitivities can be calculated analytically in the frequency

domain, because time differentiation has been converted to multiplication by jω .  In the time

domain, the sensitivities would have to be calculated by solving a set of differential equations, or

by finite difference15,16,25.

Small magnitude for a sensitivity indicates that the model output is only slightly affected by

changes in that parameter.  This leads to an inaccurate parameter estimate, because the parameter

value can be changed by large amounts without significantly affecting the model fit to the data.

Eqs. (42)-(46) show that the frequency content of the input in relation to the system break

frequencies can have a strong effect on the sensitivities, and therefore also on estimated

parameter accuracies.

Apart from the sensitivity magnitude issue, it is also necessary that the phase angles of the

sensitivities differ from one another by a value that is not an integer multiple of 180 deg.  If the

complex sensitivities are pictured as vectors in the complex plane, this simply means that the

vectors representing the complex sensitivities cannot be collinear.  When two or more complex

sensitivities have phase angles that differ by a multiple of 180 deg, the output can be influenced

similarly by changes in any of the corresponding parameters, and the parameters are correlated.

As in the gain example given above, the modeling problem is indeterminate, because movement

of any of the correlated parameters could be used to produce a particular model output.

Mathematically, sensitivities that are nearly linearly dependent will cause problems with the

matrix inversion in Eqs. (21) and (22).

Figure 1 is a Bode plot indicating the frequency response for the sensitivities in

Eqs. (42)-(46), using an impulse input and the following nominal values for the model

parameters:
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b b
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The frequencies plotted in Figure 1 cover the frequency range for LOES modeling1-3, where

most pilot inputs occur:

01 10.  rad / sec  rad / sec ≤ ≤ω (49)

Parameter values in Eqs. (47) and (48) are representative values chosen for demonstration

purposes.  The general discussion to follow applies regardless of the specific values taken by

these parameters, provided the statements referring to frequency ranges are understood to be

relative to the break frequencies defined by the particular parameter values used.

Figure 1 illustrates the two important qualities of sensitivities that relate directly to the

success of the parameter estimation – magnitude and correlation.  All model sensitivities are

relatively large in the mid-range frequencies, and the equivalent time delay has high sensitivity at

high frequencies.  Good estimates of the equivalent time delay can therefore be achieved with

sharp-edged inputs, which contain high frequency components from the sharp edges.  In the

lower part of Figure 1, phase plots for the b0  and a0  sensitivities indicate correlation at low

frequencies, while the phase plots for b a1 1, ,  and τ sensitivities show a separate correlation at low

frequencies.  For high frequency inputs, parameters b1  and a0  are correlated.  Parameters b a0 1, ,

and τ show a separate high frequency correlation. The high frequency correlation between

parameters b1  and a0  is moderated because of the steep roll-off in magnitude for the a0

sensitivity at high frequency.
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The situation is summarized by the diagram in Figure 2, which shows all strong sensitivity

correlations (absolute value greater than 0.9) from Eqs. (42)-(46) for low frequencies (solid

lines) and high frequencies (dashed lines).  The data for Figure 2 was generated numerically in

the time domain using low and high frequency inputs applied to the model of Eq. (17) (time

domain version of Eq. (2)), with parameter values from Eq. (47).  Table 1 gives the sensitivity

correlation matrix for the sensitivities using a low frequency (0.1 rad/sec) unit amplitude

sinusoidal longitudinal stick input.  The time history was 200 seconds long with ∆ t = 0 025.  sec.

The sensitivities were computed in the time domain using central finite differences, as a check on

the analytical expressions in Eqs. (42)-(46).  Table 2 contains similar information for a high

frequency (10 rad/sec) unit amplitude sinusoidal input lasting 200 seconds with ∆ t = 0 025.  sec.

The data in Tables 1 and 2 corroborate the sensitivity analysis given above, and are consistent

with the sensitivity correlations shown in Figures 1 and 2.

When parameter sensitivities are correlated, any estimation routine will produce inaccurate

parameter estimates with high variances due to an indeterminacy in the dependence of the output

on the model parameters.  Correlation between parameter sensitivities is directly related to

ill-conditioning in the numerical algorithms used to estimate model parameters from measured

data, leading to convergence problems and inaccurate, non-physical values for the estimated

parameters.  Such phenomena have been reported in the literature1,4,5, but without an explanation

from a system identification point of view.  Later simulation examples will demonstrate these

effects.

The implication for experiment design is that a mix of high and low frequencies in the input

would break all the parameter correlations except the a1  and τ correlation, which is present at

both high and low frequencies.  Including some mid-range frequencies would help to accurately

estimate the a1  and τ parameters.  A predominantly low frequency input (such as a step input)

would be particularly bad for parameter estimation purposes, because Figure 1 shows parameters

b a1 1, ,  and τ as highly correlated, and parameters b a a1 1 0, , , and τ as insensitive for such an

input.  Inputs with frequencies near the break frequencies (1 rad/sec for the numerator zero,

2 rad/sec for the denominator quadratic in this case), would produce sensitivities that have

relatively high magnitudes with phase characteristics that vary sufficiently to avoid high

parameter correlations.  The problem with using inputs in this frequency range indiscriminately
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is that the system response is largest in this frequency range, and therefore the output can

become large enough to invalidate the assumed linear model structure of the LOES model.  A

balance must be struck between good excitation in the frequency range of the system break

frequencies and keeping the output response in the range where the linear model is valid.

Optimal input design techniques25-28 can be used to do this, but good results can also be achieved

heuristically15 using multi-step inputs or doublets.

When a relatively large amount of flight test time is available (e.g., 3-4 minutes at each

flight condition), frequency sweep inputs19,22 can be used effectively to collect data for LOES

modeling.  Experiments are conducted using individual maneuvers for each axis (roll, pitch, and

yaw) at each flight condition.  The parameter estimation method generally used19,22,23 to analyze

the data from this type of flight test maneuver involves estimating accurate spectral densities in

the frequency domain, which in turn requires that sufficient input power be applied over the

frequency range of interest.  Relatively large amounts of total flight test time are required to

achieve extended time on all frequencies of interest, or to run the repeated maneuvers necessary

to achieve sufficient accuracy for the spectral estimates.  Long maneuver times result from the

requirement that the maneuver include sufficient input power (i.e., 2-3 cycles in the time

domain) throughout the frequency range of interest.  For lower frequencies, long periods are

involved, and there is added difficulty in keeping output responses inside the range for which the

LOES model is valid.  Some economy in flight test time required to collect data for accurate

model parameter estimation can be achieved using targeted robust optimal inputs28 with some

rough idea of the location of the break frequencies a priori.  Such information is usually

available from wind tunnel aerodynamic data and nonlinear simulation including the control law

implementation.

From Eq. (14), state space output error sensitivities for ~q  are:

∂
∂
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Figures 3 and 4 give parameter correlation information for the state space output error

formulation in the same format as before, using equivalent parameter values computed from

Eqs. (16) and (47), and the same impulse input.  Figure 3 shows parameters Lα ,  Mα ,  Mq , and

M
eη  as highly correlated at low frequency.  Low frequency correlations with τ  are moderated

because of the low frequency roll-off in magnitude for the � �~q τ  sensitivity.  This same effect

moderates most of the high frequency sensitivities that would be expected for many of the

parameters, based on phase angles.  Figure 4 shows that most of the strong parameter

correlations occur at low frequency, in contrast to the transfer function parameterization, where

the strong parameter correlations were roughly evenly divided between high and low

frequencies.  In this case, mid-range frequency inputs would produce sensitivities with relatively

high magnitudes and phase characteristics that vary sufficiently to avoid high correlations.

From the above discussion, it is clear that the frequency content of the input has a

significant effect on the sensitivities.  It is also true that the model parameterization interacts with

the frequency content of the input and the model parameter values in a complicated way to

determine the magnitude and correlations of the parameter sensitivities.
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Equation Error

From Eq. (30), the parameter sensitivities for the equation error formulation are

∂
∂

− = −
b

q j ee
j
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2ω ω η ωτ~ ~ (55)
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If the time delay is fixed, equation error sensitivities in Eqs. (55)-(59) depend only on the

data and not on estimated parameter values, so the parameter estimation problem is linear with a

single step solution from Eq. (37), as discussed above.  When the relaxation method is used to

estimate equation error parameters, the sensitivity vector for the time delay parameter from

Eq. (59) is appended to the matrix X of equation error sensitivities in Eq. (34) to compute the

parameter covariance matrix for all the parameters (cf. Eq. (38)), from which estimated

parameter standard errors are obtained.
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Comparison of output error sensitivities in Eqs. (42)-(46) with the corresponding equation

error sensitivities in Eqs (55)-(59) reveals that the sensitivities differ only by a factor of

1 2
1 0− + +ω ωa j a3 8 , as long as the parameters used to compute the output error sensitivities

produce a model pitch rate that matches the measured pitch rate.  It follows that when the

parameters used to compute output error sensitivities also produce an output error cost close to

the minimum, the convergence behavior of equation error and output error should be similar.

When the parameter values used to compute output error sensitivities are farther from the values

for minimum output error, the output error sensitivities are misleading, sometimes to the extent

that the output error parameter estimation does not converge or converges to non-physical

values.  In some cases, the output error method fails to produce realistic values for the

parameters even when started at values considered close to the values for minimum output error,

e.g., equation error estimates.  It appears that the interplay between the frequency content in the

measured input/output data and the sequence of parameter estimates inherent in nonlinear

parameter estimation (cf. Eqs. (20) and (21)) can produce sensitivities that never direct the

optimizer to a realistic solution.  Some of these issues are demonstrated using simulation

examples described later.

LOES MODELING ISSUES

Neither output error nor equation error parameter estimation in the frequency domain

require integration, because all time derivatives become multiplications in frequency.  Bias

parameters are avoided in both techniques by detrending the time domain data and selecting

2π T  as the lowest frequency for the Fourier transformation, where T is the time length of the

data record.  There are no ratios of spectral estimates to compute, as required for a Bode plot.

The data has simply been transformed from the time domain to the frequency domain for

analysis.  For most practical flight test data analysis, the number of data points in the frequency

domain is much less than in the time domain m N<<1 6 , so that data analysis in the frequency

domain involves many fewer data points.  This advantage is gained by using the arbitrary

frequency, high accuracy Fourier transform21.  The result is more efficient calculation and faster

parameter estimation because only chosen frequencies in the frequency band of interest are used

for the Fourier transformation and data analysis.  Also, in the frequency domain, the estimated
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parameter covariances are automatically corrected for the spectral content of the residuals15,16,19.

Transformation to the frequency domain allows multiple maneuvers to be analyzed

simultaneously, thus enhancing the information content in the data used for modeling.  The main

disadvantage for parameter estimation in the frequency domain is that a time domain simulation

must be carried out using the identified model to check the model fit to measured outputs in the

time domain.

An effective approach for LOES model identification is to use the equation error solution to

provide starting values for the output error problem.  This two stage technique retains the

favorable statistical properties of the output error parameter estimates18, and avoids convergence

problems that result when the starting values of the parameters are far from the minimum, which

means the output error sensitivities (cf. Eqs. (42)-(46)) can be misleading.  Using the equation

error formulation with fixed τ  means that no starting values are needed, except for τ .  A good

starting value for τ  is 0.1 sec in nearly all cases.  Since the equation error estimate for τ  is

found using a line search with the other parameters fixed, each equation error parameter

estimation is a linear parameter estimation problem, which is solved in a single step.  Figures 1

and 2 show that the equivalent time delay parameter τ  is one of the most troublesome in terms

of parameter correlations.  Fixing the value of τ  in each step of the equation error parameter

estimation therefore makes each step toward the solution both fast and well-conditioned.  In

many cases, a short iterative output error parameter estimation using the equation error parameter

estimates as starting values is a simple operation, because the parameter estimates from the

equation error solution are very close to the final parameter estimates using output error.  Later

simulation examples explore this further.

Another option available to improve closed loop LOES modeling is to use more output

measurements.  This improves the parameter estimation, because the ratio of information to

unknown parameters increases, assuming the experiment was designed well.

Aircraft longitudinal short period dynamics involve angle of attack α , in addition to pitch

rate q, and this fact can be used advantageously in LOES model identification.  From

Eqs. (13)-(15), the longitudinal LOES transfer function models are
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The LOES model for incremental z body axis acceleration at the c.g. is
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The LOES ~ / ~q eη  transfer function model in Eq. (61) can be identified at the same time as either

the ~ / ~α ηe  model in Eq. (60) or the ~ / ~az eη  model in Eq. (62).

Flying qualities specifications were historically developed for conventional airplanes,

where stick deflection commands angle of attack29.  It therefore makes sense to include the angle

of attack response in estimating LOES models for comparison with the flying qualities

specifications, which are based largely on flight testing of conventional airplanes.  The angle of

attack measurement is normally from a vane which is subject to systematic errors, particularly at

high angles of attack.  These systematic errors can be estimated using data compatibility

analysis30.  The linear acceleration at the c.g. would be preferred when the angle of attack

measurement is suspect, for example, because of the position of the sensor in the flow field.

The transfer function models of Eqs. (60)-(62) each involve only a single output

measurement.  In contrast, if a state space model structure like Eq. (11) is chosen, each equation

in the state space model involves more than one state.  The state space model of Eq. (11)

therefore requires both pitch rate and angle of attack measurements for the equation error

formulation.

The equation error and output error formulations in the frequency domain differ in how the

sensitivities are computed, i.e., using measured quantities for equation error sensitivities and
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computed model outputs for output error sensitivities.  In addition, the equation error method

minimizes the equation error, which involves matching state derivatives, rather than matching

outputs, as in the output error method.  The method for computing the weighting matrix is the

same for both methods, except for the fact that the equation error applies to time derivatives of

the states rather than the outputs, as for the output error method (cf. Eqs (24)-(25) and (40)-(41)).

Another approach for ameliorating parameter correlation and insensitivity problems is to fix

one or more parameters at specific a priori values.  Frequently the 1
2

Tθ  parameter in Eq. (1)

(equivalently, Lα  in Eq. (14)) is set equal to the open loop Lα  stability derivative, i.e.,

1
2

T Lθ α≡ 1 6bare airframe 
1,3,5.  The reasoning behind this a priori choice of 1

2
Tθ  is that if the

effects of the higher order control system dynamics and nonlinearities are taken up in the

equivalent time delay, then classical linear flight dynamic analysis can be used to show that the

LOES zero location should be roughly the same as open loop Lα , cf. Eqs. (1) and (14).

Figures 5 and 6 give parameter correlation information for the output error formulation and

the transfer function model of Eq. (1), in the same format as before, using equivalent parameter

values from Eq. (48), with the same impulse input.  Figures 5 and 6 show that the 1
2

Tθ

parameter has the largest number of strong correlations, including both high and low frequency

correlations, and is correlated in some way with every other model parameter.  Fixing the value

of 1
2

Tθ  therefore greatly improves parameter identifiability.

Unfortunately, no claim can be made concerning the satisfaction of Mil-Spec requirements

related to parameter 1
2

Tθ  when it is fixed a priori, rather than estimated from measured flight

test data.  In addition, examination of Eq. (1) and Figure 6 reveals that if 1
2

Tθ  is fixed in the

numerator of Eq. (1) to an incorrect value, then any other parameter can be badly biased,

depending on the frequency content of the input.  The following excerpt from the Mil-Spec1

relates directly to this discussion, showing the effects of parameter correlation on parameter

estimates and how fixing the value of 1
2

Tθ  can change the modeling results significantly:
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"An example of the differences with 1
2

Tθ  fixed and free is seen in table XII (taken from

MDC Rpt. A6792 fits of the AFFDL-TR-70-74 data).  It can be seen that substantial

differences in all the effective parameters exist between the 1
2

Tθ  -fixed and -free fits.

Hence the dilemma is not a trivial one."a

TABLE XII.  Examples of variations in LOES parameters with 1
2

Tθ  fixed and freeb

1 Tθ2
ω sp ζ sp τ e

CONFIGU-

RATION
FIXED FREE FIXED FREE FIXED FREE FIXED FREE

1A 1.25 0.43 3.14 2.54 0.39 0.65 0 0.020

1G 1.25 176.0 0.78 1.55 0.74 1.07 0.185 0.043

2H 1.25 4.08 2.56 3.80 0.80 0.52 0.126 0.098

4D 1.25 5.25 3.47 4.61 0.58 0.23 0.169 0.111

Deterministic modeling error, such as high order control system dynamics and

nonlinearities, cannot be restricted to a single free parameter, e.g., the equivalent time delay.

Some of the deterministic modeling error will be taken up in the 1
2

Tθ  parameter estimate (and

the other parameter estimates as well), which means that an adequate LOES model will need a

value for 1
2

Tθ  that is different from the open loop value of Lα .  Movements in the free

parameters can and will account for deterministic modeling error to some extent when used in

the LOES modeling context.  Assuming the input is sufficiently rich, when one or more of the

parameters is fixed to a value different from what would be chosen with all parameters free, then

the estimation algorithm adjusts the remaining parameters to compensate for the parameter(s)

whose freedom has been taken away.  Naturally, the free parameters chosen for this task by the

                                                

a Military Standard – Flying Qualities of Piloted Aircraft,  MIL-STD-1797A,  January 1990,
(Ref. [1]),  p. 176.

b ibid, p. 176.
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optimizer are those most correlated with the frozen parameter(s).  Later simulation examples

demonstrate these effects.

When a model parameter is fixed, its standard error is assumed to be zero (or very small),

indicating a secure knowledge of the parameter value before analyzing any data from the

experiment.  For the case of fixing Lα , the difficulty arises because this parameter cannot be

assigned the distinct role of accounting for only the open loop linear effect when used in the

LOES modeling context, and therefore its a priori value is inconsistent with a very small

standard error.  High order control system dynamics and nonlinearities must also be partially

accounted for by movement of the Lα  parameter in conjunction with the other free parameters.

If it were possible to assign a distinct role to a particular parameter in the LOES model, and

an accurate a priori value could be determined, then fixing that parameter to the a priori value

would be valid and the conditioning for remainder of the LOES model parameter estimation

problem would be improved.  Such an opportunity exists for the equivalent time delay parameter,

as described next.

Some flight test investigations aimed at correlating low order equivalent systems with pilot

ratings8-10 implement the equivalent time delay as a pure delay between the stick and the control

surface deflection.  It can be inferred from the preceding discussion that when all LOES model

parameters are free, the estimated equivalent time delay parameter is not an estimate of any real

pure time delay but rather some combination of the pure time delay plus other dynamical effects.

Therefore, the estimate of the equivalent time delay parameter from flight test data can be

different from the quantity that has been correlated with pilot opinion through flight test.

In order to remedy the situation, it is proposed that the role of the equivalent time delay

parameter be assigned to that used in correlations with pilot opinion through flight research.  The

equivalent time delay is estimated as the pure time delay from stick deflection to control surface

deflection.  Figure 7 is an expanded view of longitudinal stick deflection and the corresponding

measured stabilator response near the initiation of a maneuver flown on the NASA F-18 HARV.

The pure time delay from stick deflection to control surface can be estimated accurately using a

time domain procedure described in the Mil-Spec and illustrated in Figure 7.  Point A is the point

of departure from the trim value for the longitudinal stick deflection.  Point C is the effective

departure from trim for the stabilator, which is computed as the projection back to the stabilator
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trim value (normalized to zero in Figure 7) from the point with maximum slope for the initial

stabilator deflection, point B, using the local slope at point B.  The estimated pure time delay is

the distance between points A and C on the time axis.

Pilot inputs and the control surface deflections are generally measured with very low noise

levels, as evidenced by Figure 7, which is unfiltered measured flight test data from the F-18

HARV.  The initial longitudinal stick deflection from a steady trim condition must be used,

because of subsequent feedback control and aircraft dynamic response.  Square wave input

forms, such as those used in the optimal input design technique of Ref. [28], help the accuracy of

the time delay estimation because of the abrupt input amplitude change from trim.  Equivalent

time delay estimated in this way corresponds directly to the time delay correlated with pilot

ratings in the literature8-10, including the Mil-Spec1.

In practice, sometimes more than one control surface responds to pilot inputs, due to the

action of the control system.  In this case, it is reasonable to compute an average of the pure time

delay values estimated for each of the control surfaces that move significantly in response to the

pilot input, and assign this average value as the equivalent time delay.  If control surface

effectiveness values are known, it may be more accurate to use a pure time delay average

weighted by the relative effectiveness values for the control surfaces that move significantly in

response to the pilot input.

At another level of sophistication, equivalent time delay estimated from control time

histories, as shown in Figure 7, could be introduced as an a priori value of the time delay

parameter for output error parameter estimation in the frequency domain.  Reference [15]

outlines how this can be done for any model parameter.  A reasonable uncertainty for the a priori

value of the time delay estimated in this way would be ± ∆t 2 .  This approach removes

parameter correlations by using an a priori estimate for the equivalent time delay that is

consistent with the time delay that has been correlated with pilot opinion in flight tests.

Finally, the preferred approach is to estimate all model parameters, including equivalent

time delay, from measured input/output data using the equation error or output error methods

described above.  When parameter correlation difficulties occur, however, the technique outlined

here can be used to find an independent estimate of the equivalent time delay, which can then be

used to improve the conditioning of the complete parameter estimation problem.
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III.  Simulation Examples

The first simulation example is a Single-Input, Single-Output (SISO) longitudinal case,

using a longitudinal stick input measured in flight on the F-18 HARV and shown in Figure 8.

This pilot input was chosen because of its wide-band frequency content centered near the natural

frequency of the simulation model; however, the input was not optimized in any way for this

work.  Simulated data was generated by applying this longitudinal stick input to the model of

Eq. (2) using parameter values from column 2 of Table 3.  Since this first example has no

modeling error, it is not a LOES modeling case.  The example was included to demonstrate the

parameter estimation algorithms in the frequency domain and to study some parameter

correlation issues.  Sample rate for the time domain data was 50 Hz.  White Gaussian noise was

added to the simulated pitch rate output so that the signal-to-noise ratio was approximately 5 to

1.  The simulated noisy pitch rate measurement is shown in Figure 9.

Parameters in the model of Eq. (2) were estimated from the simulation input and output

data using equation error and output error in the frequency domain, as described above.  The

Fourier transform was done at frequencies evenly spaced at 0.1 rad/sec intervals for

01 10.  rad / sec  rad / sec≤ ≤ω , giving 100 data points in the frequency domain for each signal.

The output error method used the equation error parameter estimates as starting values.  The

equation error method did not require starting values, except for the equivalent time delay

parameter τ , for which the starting value was 0.1 sec.  The parameter estimation results given in

Table 3 indicate that the equation error method gave parameter estimates that matched the true

values within approximately ±1 standard error, indicating that the input was sufficiently rich to

allow accurate estimation of the LOES model parameters.  The output error method, starting

from the equation error parameter estimates and using the same data, improved the accuracy of

every parameter estimate and lowered every standard error.  The standard errors from the output

error method were still representative of the true accuracy of the output error parameter

estimates.  Similar results were seen when the simulation example was repeated for numerous

realizations of the Gaussian noise sequence added to the simulated pitch rate.

The state space model parameterization of Eq. (14) was also used for the output error

parameter estimation.  The results obtained were similar both in terms of the proximity of the
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parameter estimates to the true values, and in the fact that the parameter standard errors correctly

represented the accuracy of the parameter estimates.

A random low frequency or high frequency input can be generated by passing a Gaussian

white noise sequence through a filter.  A low frequency input was generated in this way using a

5th order Butterworth low pass filter with cut-off frequency 0.3 Hz.  The result is shown in

Figure 10.  The input power spectrum in Figure 11 indicates that the filtering successfully

removed frequency components above 0.3 Hz.  Simulated pitch rate response using the same

model as before with 20% white Gaussian measurement noise added is plotted in Figure 12.

Table 4 contains results from the parameter estimation.  The third column of Table 4

contains equation error parameter estimates and standard errors.  Column 4 of Table 4 shows

results from output error parameter estimation using the equation error parameter estimates for

starting values.  The same frequencies as in the previous example were used for the Fourier

transforms.  Again, the output error method improved the results both in terms of parameter

accuracy and smaller standard errors.  Although the equation error estimates were less accurate,

the associated standard errors properly reflected this.  Similarly, the standard errors from the

output error method correctly quantified the true parameter accuracy.  The fifth column of Table

4 shows the results obtained from output error parameter estimation when the starting values of

the parameters were not as good as the equation error estimates, but still reasonable guesses.  In

this case, the output error estimation converged to very inaccurate parameter values.  Standard

errors were badly inaccurate and therefore did not reflect the true parameter accuracy.  This

behavior was the result of the numerous high parameter correlations for low frequency inputs

using the output error formulation and misleading sensitivities, as discussed above.

Other similar simulation runs were carried out, using low frequency inputs from different

filtered noise sequences and different output measurement noise sequences.  Equation error

always produced an answer.  The proximity of the equation error parameter estimates to the true

parameter values correlated well with the time domain match of measured output to model

output using the equation error parameter estimates.  When the equation error time domain

match was not good, the subsequent output error estimation usually did not converge when

started from the equation error parameter estimates.  This suggested that the time domain fit
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using equation error parameters could be used as an indication of the suitability of the equation

error parameter estimates as starting values for the output error parameter estimation.

In this example, a useful metric for a reasonable time domain model fit to the data was:

J
z y z y

y y

rms v

rms y

T

T
=

− −
= <

1 6 1 6 1 6
1 6 0 4.  for a good fit (63)

Since the random noise component of z  comprised 20% of rms y1 6 , the cutoff value of 0.4

given for the time domain fit means the root mean square (rms) of the deterministic model

mismatch was roughly equivalent to that of the non-deterministic model mismatch.  The above

metric worked well for this example, but cannot be recommended for general application without

further study.

As long as the equation error time domain match was reasonable (as defined above), the

subsequent output error parameter estimation converged and produced improvement in the

results similar to that shown in Table 3 and columns 3 and 4 of Table 4.  Similar statements

apply for high frequency inputs, which were also tested using the same simulation, with similar

results.

Table 5 contains parameter estimation results for the same simulation using the flight test

input of Figure 8 and the same output noise level, but using both α and q measurements in the

data analysis, with the same frequencies for the Fourier transform.  Figure 13 shows the

simulated measured outputs.  The pitch rate plot in Figure 13 is identical to Figure 9.  Compared

to the results in Table 3 for the same simulation and parameter estimation method, but using only

the q measurement, the results in Table 5 show that the additional measurement improved

parameter accuracy and lowered standard errors for both the equation error and output error

methods.  As in the single output case, the output error method converged to reasonable

parameter estimates when the starting values were relatively close to the true values.  The

equation error method again provided good starting values for the output error parameter

estimation, and the proximity of the equation error parameter estimates to the true values

correlated well with the time domain match.  State space parameterization using both the α and q



32

measurements for this simulation example produced similar results.  In all cases, using either the

equation error or the output error method, the proximity of the estimated parameters to the true

values was accurately represented by the estimated standard errors.

For the multiple output cases, the equation error method converged well using the same

modified Newton-Raphson optimization technique used for the output error cases.  This

optimization technique moves all unknown parameters at the same time.  For the single output

equation error case, it was necessary to use the relaxation method, wherein the equivalent time

delay was estimated while the linear model parameters were fixed, and vice versa.  Multiple

measured outputs provided enough additional information in the data that the relaxation

technique was not required for the equation error method in the multiple output case.

The output error method using the relaxation method for equivalent time delay estimation

did not improve convergence behavior compared to the output error method using modified

Newton-Raphson optimization.  The output error method required starting values from the

equation error method in conjunction with modified Newton-Raphson optimization to converge

reliably in all cases.

Returning to the SISO case, the next example introduces deterministic modeling error,

which is the usual situation for LOES modeling.  The high order system transfer function was:
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was the transfer function for the open loop short period dynamics of the aircraft, and
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was the transfer function for the control system dynamics.  The high order system in Eq. (64) is

configuration 2H from Ref. [12], quoted in Refs. [1] and [3].  In Ref. [12], the longitudinal

dynamics in Eq. (64) (and many other high order dynamic systems) were simulated in-flight and

rated by test pilots using the Cooper-Harper scale for a flying qualities evaluation task.  LOES

parameter estimation results (given for configuration 2H in the Mil-Spec table above, cf. Theory

section) were obtained using a least squares fit to Bode plot magnitude and phase information for

the high order system over the frequency range 0.1 to 10 rad/sec, using the cost function:

J q qLS i hos i LOES
i

m

i hos i LOES
= − + −

=
∑ 20 20 0 017510 10

2

1

2
log ~ log ~ .ω ω ϕ ω ϕ ω1 6 1 64 9 1 6 1 63 8 (67)

For the present example, the same longitudinal pilot input shown in Figure 8 was applied to

the high order system of Eq. (64), and the output was corrupted with 20% white Gaussian noise.

The same frequencies as before were used for the data analysis.

Table 6 shows parameter estimation results.  The second column of Table 6 contains the

equation error parameter estimation results and corresponding standard errors.  Column 3

contains the output error results using the same data with starting values from the equation error

results.  Column 4 contains output error results with 1
2

Tθ  fixed at 1.25 for the same data.  The

fifth and sixth columns of Table 6 are results from the Mil-Spec table quoted in the last section,

converted to the parameterization of Eq. (2) for comparison purposes.  For the results in columns

5 and 6 of Table 6, the LOES gain parameter was set to one (the true value for the high order

system), and therefore was not estimated.  Standard errors for the estimated parameters in

columns 5 and 6 of Table 6 were not included in Refs. [1] or [12].
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Output error parameter estimation results using the simulated data with 1
2

Tθ  fixed at 1.25

(column 4, Table 6) were similar to the results in column 5, which were obtained from a least

squares fit of the frequency response magnitude and phase, as described above.  This indicates

that the short 16 second time record using the input of Figure 8 had enough information for the

output error estimator to match results from the least squares Bode plot analysis.  The Bode plot

for the high order system in Eq. (64), which comprised the data for the results in columns 5 and 6

of Table 6, corresponds to a perfect spectral estimation of the dynamic response.  In practice,

extended sine sweep inputs would be necessary to generate something close to the frequency

response data used for the Bode plot least squares fit.  In addition, the gain parameter was set to

one (the true value) for the Bode plot analysis, and therefore was not estimated.  This helps the

parameter estimation, since the LOES gain value is exactly correct and there is one fewer

unknown parameter to be estimated.  In practice, the LOES gain parameter is unknown and must

be estimated from the data.

The third row from the bottom of Table 6 shows the ratio of flying qualities level predicted

from the estimated parameters and the Mil-Spec, to the actual pilot ratings for this high order

system in flight, taken from Ref. [12].  The Bode plot analysis required a fixed and accurate

value of 1
2

Tθ  to correctly predict the handling qualities rating.  The output error parameter

estimates in column 3 of Table 6 correctly predicted actual pilot flying qualities ratings using

only the pilot longitudinal stick and pitch rate data from a short maneuver.

The last two rows of Table 6 give some insight into the modeling.  Cost values using

Eq. (67) for frequency ranges 0.1 to 10 rad/sec and 1.5 to 6 rad/sec were computed for all the

parameter estimation results, using a constant 0.1 rad/sec frequency spacing.  Most of the power

(88%) for the input of Figure 8 lies in the frequency range 1.5 to 6 rad/sec.  The methods that

used simulation data (columns 2 through 4) gave low cost values for this frequency range, with

the output error method giving the lowest cost.  For the full frequency range, the least squares

Bode plot method with all parameters free gave the lowest cost value, because the optimization

problem was formulated that way.  However, the LOES model parameters estimated using this

method did not correctly predict flying qualities level (cf. Table 6, column 6).  As noted above,

the Bode plot method required a fixed and accurate a priori value of the LOES 1
2

Tθ  parameter

to correctly predict the flying qualities level in this case.  In practice, accurate a priori values for
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the LOES model 1
2

Tθ  parameter are not available, because model parameters must include both

bare airframe and control system effects in the LOES context.

Previous work1 on pilot sensitivity to variations in the dynamic aircraft response as a

function of frequency have shown that the pilot is most sensitive to changes in dynamics near the

crossover frequency.  It is therefore reasonable to identify the LOES model based on data in this

region to accurately predict flying qualities ratings from the pilot.  This example demonstrates

that data from short flight test maneuvers with input energy near the crossover frequency of the

high order system can be used with the methods described in this work to identify accurate

LOES models that successfully predict pilot ratings from flight.

Model parameters in the LOES context do not have “true” values, because the structure of

the model is incorrect by assumption.  The main requirements are that the identified LOES

model, whatever its parameter values, accurately represents the data with parameter values that

have good identifiability (indicated by low standard errors).  Such models predict flying qualities

well.  Parameter values for adequate LOES modeling are therefore not unique, and could easily

change with the frequency range of the modeling, for example.  Parameter standard errors in the

LOES modeling context are more indicative of parameter identifiability, and should not be

interpreted as a measure of the accuracy of the LOES parameter estimate relative to some “true”

value.

The last simulation example includes deterministic modeling error that interacts

significantly with the techniques used for LOES modeling.  Specifically, this example

investigates the “galloping Lα ” problem.  The true high order system transfer function was:
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where
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was the transfer function for the open loop short period dynamics of the aircraft, and

C s
s s

s

1 6

1 6

=

+�
! 

"
$# + �

��
�
�� +

�
!
  

"
$
##

1

05
1

63
2

0 75
63

1
2

2.

.
(70)

was the transfer function for the control system dynamics.  The high order system in Eq. (68) is

configuration 1G from Ref. [12], quoted in Refs. [1] and [3].  This is also one of the cases

included in the table excerpted from the Mil-Spec in the last section.

The same longitudinal pilot input shown in Figure 8 was applied to the high order system of

Eq. (68), and the output was corrupted with 20% white Gaussian noise.  The same frequencies as

before were used for the data analysis.

Table 7 shows parameter estimation results for this example in the same format used for

Table 6.  The second column of Table 7 contains the equation error parameter estimation results

and corresponding standard errors using the pitch rate output and longitudinal stick input.

Column 3 contains the output error results using the same data with starting values from the

equation error results.  Column 4 contains output error results using transfer function models and

both the pitch rate and angle of attack outputs.  The fifth and sixth columns of Table 7 are results

from the Mil-Spec table quoted in the last section, with the parameters converted to the

parameterization in Eq. (2) for comparison purposes.  The latter results were obtained using a

least squares fit to Bode plot data, in the same manner described above for case 2H.

The results in column 6 of Table 7 show the characteristic “galloping Lα ” problem, namely

that Lα  is estimated as a very large value L b b Tα θ= =0 1 1
23 8 .  The results in column 3 of

Table 7, which were obtained from simulated data using the input of Figure 8, show a close

similarity to the results in column 6 of Table 7, which were generated from a least squares fit of a
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perfect Bode plot for the high-order system pitch rate response.  The “galloping Lα ” problem

has therefore been reproduced using the data from the 16 sec simulated maneuver.

The last two rows of Table 7 show cost values using Eq. (67) for the pitch rate only, over

frequency ranges 0.1 to 10 rad/sec and 1.5 to 6 rad/sec, using a constant 0.1 rad/sec frequency

spacing.  Most of the power (88%) for the input of Figure 8 lies in the frequency range 1.5 to

6 rad/sec.  Results in column 2 of Table 7 show that the equation error parameter estimation

results are reasonable, and the costs are comparable to the output error cases in columns 3 and 6,

which used only the pitch rate output with all parameters free.  Reasonable parameter estimation

results were also obtained in column 4 of Table 7, where the output error method was used with

both the angle of attack and pitch rate outputs.  For this method, the costs are significantly higher

than the others, indicating that some trade-off in fit error between the two outputs occurred in the

output error minimization.  The standard errors in column 3 of Table 7 indicate that the output

error parameter estimates with the “galloping Lα ” characteristic had poor identifiability and

were very inaccurate.  In contrast, the standard errors were low for the equation error results in

column 2 and the output error results using both angle of attack and pitch rate in column 4,

indicating that the estimated LOES model parameters were accurate with good identifiability.

The standard errors computed for all the methods described in this work gave important

information regarding the adequacy of the LOES model parameters, even when deterministic

modeling error was present.  The time domain matches of model output pitch rate to measured

pitch rate were similar and very good for all the LOES parameter estimation results given in

Table 7.

In all cases, the third row from the bottom of Table 7 indicates that the predicted flying

qualities matched the pilot ratings from flight.  In the cases with “galloping Lα ” (columns 3 and

6, Table 7), level 3 flying qualities was correctly predicted only because the “galloping Lα ”

parameter caused a level 3 flying qualities prediction.  The remaining parameter values would

predict level 1 flying qualities.  In the case with the best LOES model parameter accuracy

(column 4 of Table 7), flying qualities level 3 was predicted from two of the criteria specified in

the Mil-Spec.
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This example demonstrated that the output error correlation problem that manifests itself as

a “galloping Lα ” can be solved using an equation error method with the same data, or an output

error method with an additional output measurement.  The corresponding LOES modeling results

in columns 2 and 4 of Table 7 are not in agreement, yet both models contain parameter values

with low standard errors, and both predict flying qualities correctly.  This demonstrates that the

adequate LOES model is not unique.  The LOES models in columns 2 and 4 of Table 7 were

generated from different parameter estimation formulations, with an additional output

measurement used in the output error case.
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IV.  Flight Test Examples

Flight test data from the NASA F-18 HARV was used to demonstrate the LOES modeling

techniques described above.  The F-18 HARV is an F/A-18A airframe which was modified

extensively for high angle of attack dynamics and control research, as part of the NASA High

Alpha Technology Program.  Modifications included thrust vectoring, a research-quality

instrumentation system, additional emergency systems, forebody strakes, and a research flight

control computer capable of implementing multiple control laws.  More details on the F-18

HARV are available in Ref. [31].

The first example involved longitudinal tracking at approximately 40 deg angle of attack.

At this high angle of attack condition, the parameters in the fixed LOES model structure must

characterize both the control system dynamics and the open loop airplane dynamics, which are

typically nonlinear.  The LOES modeling task is therefore very challenging.

Data for this example was taken from 3 identical tracking task maneuvers on the

F-18 HARV using the same control law, but flown by different pilots on different days.  The

upper plots of Figures 14-16 show the longitudinal stick deflection for a 20 second time slice

from each maneuver.  The lower plots in Figures 14-16 indicate the measured pitch rate response

with a solid line, and the identified LOES model fit with a dashed line.  The LOES model

identification was done using the SISO model of Eq. (2), and equation error in the frequency

domain with relaxation applied to the time delay estimation, as described above.  The fit of the

LOES model to the data was excellent, considering the high angle of attack, the short time length

of data, and the fact that only the measured pitch rate output was used.

Table 8 contains the LOES model parameter estimates and standard errors for the 3

maneuvers depicted in Figures 14-16.  The estimated values of the gain parameter b1  and the

damping parameter a1  show statistical agreement among the 3 maneuvers, meaning that the 95%

confidence intervals (parameter estimate ±2 standard errors) overlap.  The other parameters,

b a0 0, , , and τ  do not agree in this way.  At the bottom of Table 8, values for numerator zero

parameter 1
2

Tθ , short period damping ζ sp , and natural frequency ω sp , based on the LOES

parameter estimates, are listed.  The last row of Table 8 contains the flying qualities levels given

by the pilot in flight, compared to values computed from the Mil-Spec1 using LOES model
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parameters estimated from the flight test data.  LOES modeling is dimensional, and therefore

includes flight condition and mass properties.  Table 9 contains the pertinent values for each

maneuver.

Although the airplane, control law, and approximate flight condition were the same, three

different pilots rated the same tracking task as level 1, 2, and 3.  This interesting phenomena was

in fact the reason that these maneuvers were chosen for analysis.  LOES modeling results in

Table 8 indicate that the pilots, who were all experienced test pilots, actually gave ratings that

were consistent with the response of the aircraft indicated by the data.  For the dynamic response

that each pilot experienced, his flying qualities ratings were consistent with those predicted by

the Mil-Spec and the LOES model identified from the measured data.

The flight condition and mass property differences shown in Table 9, though not negligible,

were not considered sufficient to account for the different pilot ratings.  Another possible

explanation for the different pilot ratings could be that in this nonlinear flight regime, the

difference in how each pilot perceived the flying qualities was related to how he flew the aircraft.

Figure 17 shows that the power spectra of the longitudinal stick deflections for each pilot were

quite different during the 20 second tracking tasks shown in Figures 14-16.  The pilot for

Maneuver 376d (upper plot in Figure 17) flew the airplane with predominantly low frequency

inputs, and rated the airplane level 1.  The pilot for Maneuver 321e (middle plot in Figure 17)

flew the airplane with a wide spectrum of input power, fairly equally distributed across the

LOES modeling frequency range of 0.016–1.6 Hz, and rated the airplane level 2.  The pilot for

Maneuver 320j was a high frequency, high gain pilot (note the vertical scale difference in the

lower plot of Figure 17).  This caused a large amount of control surface rate limiting, which is

reflected in the estimate of equivalent time delay for this maneuver in Table 8.  This pilot rated

the airplane level 3.  Based on this analysis, it is possible to conjecture that the ratings the pilots

gave were in fact consistent with the Mil-Spec guidelines, and that the widely different ratings

were the result of the manner in which the airplane was flown to accomplish the task.

The maneuvers were flown at high angle of attack, where the aerodynamics are known to

be nonlinear, and the control surface deflections and rates can reach hard limits.  Nonlinear

dynamical system response is known to be sensitive to input frequency and amplitude, and the

LOES model is largely a linear approximation to a nonlinear system in this case.  It seems
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reasonable that the LOES model would change significantly depending on the amplitude and

frequency range of the input when the underlying physical system dynamics are nonlinear.

Due to the nature of the tracking task, the flight test data used for the LOES modeling was

concentrated in a frequency band around the pilot crossover frequency.  The LOES modeling

technique therefore identified the best LOES model for this frequency band only, since the

identification was based only on flight test data from each tracking maneuver.  The Mil-Spec

guidelines, which were developed at low angle of attack, translated well to this high angle of

attack case where the LOES identification was limited to a frequency band near the pilot

crossover frequency.  This result is in consonance with empirical information in the Mil-Spec

showing that a good LOES model must closely match the aircraft closed loop dynamics in the

vicinity of the pilot crossover frequency (cf. Figure 15, p. 181, Appendix A in Ref. [1]).  The

high accuracy LOES identification methods outlined in this report made this analysis possible

with very little computational effort.

The last example is a Multiple-Input, Multiple-Output (MIMO) LOES modeling problem.

Closed loop lateral/directional dynamics of the F-18 HARV at 45 deg angle of attack were

modeled based on measured data from a 24 second maneuver, using the LOES model state space

formulation:
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The Yr  parameter includes the inertial term, and the Lφ  parameter is due to the control law,

which in this case was the research flight control law in thrust vectoring (TV) mode.  This LOES

modeling problem is challenging because of the short data record available, the high angle of

attack flight condition, and the MIMO model, which contains a relatively large number of

parameters.
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Figure 18 shows the rudder pedal and lateral stick inputs, which were implemented by the

research flight control computer and were designed to maximize data information content28.

Each input had an independent equivalent time delay parameter.  The solid lines in Figure 19

show the measured outputs used in the LOES model identification.  The model structure for the

state space system was determined using equation error in the frequency domain, applied

individually to each line of the state space system in Eq. (71), with the time delays fixed at zero.

The final model parameter estimates were determined using output error in the frequency domain

with all parameters free, using equation error starting values.  Starting values for the time delay

parameters τ r  and τ a  were both 0.1 sec.  Table 10 contains the state space model parameter

estimates and standard errors.  Most parameter standard errors were less than 15% of the

respective nominal parameter estimate.

The dashed lines in Figure 19 show that the model fit to the data was excellent, even at this

high angle of attack flight condition using a LOES model structure to characterize the end-to-end

dynamic MIMO response.  Modal parameters are given at the bottom of Table 10.  LOES

transfer functions can be computed easily20 from the parameter estimates in Table 10 and the

state space model of Eq. (71).  Using the state space model formulation for the LOES model

identification allowed inclusion of important control law parameters Lφ3 8  without violating the

fixed transfer function structure imposed by the Mil-Spec for lateral/directional LOES models.

In addition, the state space model formulation allowed the use of many output measurements to

improve model parameter estimate accuracy.  The identified closed loop dutch roll damping is

0.72, which was close to the 0.70 target value for the control law design.  Correlations of pilot

ratings with lateral/directional LOES identified from flight test data using the methods described

in this report can be found in Ref. [32].
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V.  Summary

Low Order Equivalent System (LOES) models are low order linear models with input time

delay, used to characterize closed loop aircraft response to pilot inputs.  In this work, methods

for accurately identifying LOES models from flight test data were developed and demonstrated.

Data analysis was done in the frequency domain using a high accuracy Fourier transform

with selectable frequency range and resolution.  Data analysis in the frequency domain was

chosen because of the equivalent time delay parameter appearing in LOES models, in addition to

computational and practical advantages.  Effective output error and equation error parameter

estimation methods were developed, and their properties were examined using sensitivity

analysis and simulation examples.  A variety of modeling topics were discussed, including

experiment design implications and data requirements for LOES modeling, model parameter

identifiability and sensitivity analysis, frequency resolution, the “galloping Lα ” problem, and a

method for independent estimation of the equivalent time delay, with interpretation in the LOES

modeling context.  Modeling techniques were demonstrated using simulation cases, then applied

to Single-Input, Single-Output (SISO) and Multiple-Input, Multiple-Output (MIMO) closed loop

flight test data from the NASA F-18 High Alpha Research Vehicle.

Flight-determined LOES models are useful in many applications, including control law

design validation, simulation, flying qualities research, aircraft development and specification

compliance, and quantifying dynamic response and flying qualities using flight test data from

flying qualities evaluation tasks.
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VII.  Tables

Table 1  Output Error Longitudinal LOES Parameter Sensitivity Correlations  
for a Low Frequency (0.1 rad/sec) Input

� �q b1 � �q b0 ∂ ∂q a1 ∂ ∂q a0 ∂ ∂q τ

1 0.037 –0.997 –0.087 –0.990 ∂ ∂q b1

1 0.011 –0.999 0.061 ∂ ∂q b0

1 0.039 0.992 ∂ ∂q a1

1 –0.011 ∂ ∂q a0

1 ∂ ∂q τ

Table 2  Output Error Longitudinal LOES Parameter Sensitivity Correlations  
for a High Frequency (10 rad/sec) Input

∂ ∂q b1 ∂ ∂q b0 ∂ ∂q a1 ∂ ∂q a0 ∂ ∂q τ

1 0.000 –0.110 0.690 –0.100 ∂ ∂q b1

1 –0.962 –0.223 0.967 ∂ ∂q b0

1 0.000 –0.960 ∂ ∂q a1

1 –0.145 ∂ ∂q a0

1 ∂ ∂q τ
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Table 3  Longitudinal LOES Modeling Results  

Parameter True Value Equation Error
Estimate

(Std. Error)

Output Error
Estimate

(Std. Error)

b1 1.000 0.977

(0.037)

1.009

(0.013)

b0 1.000 1.181

(0.370)

1.046

(0.047)

a1 2.000 1.946

(0.256)

1.998

(0.029)

a0 4.000 4.332

(0.695)

3.973

(0.093)

τ 0.100 0.090

(0.007)

0.098

(0.003)

Table 4  Longitudinal LOES Modeling Results for Low Frequency Input  

Parameter True Value Equation Error
Estimate

(Std. Error)

Output Error
Estimate

(Std. Error)

Output Error Estimate
$ . . . .θ 0 05 05 05 1 0 3= T

(Std. Error)

b1 1.000 0.997

(0.616)

0.985

(0.070)

–0.434

  (0.018)

b0 1.000 1.519

(0.427)

1.020

(0.037)

0.833

(0.026)

a1 2.000 1.503

(0.741)

1.980

(0.108)

1.136

(0.024)

a0 4.000 5.645

(1.577)

4.040

(0.153)

3.183

(0.067)

τ 0.100 0.208

(0.176)

0.099

(0.022)

–1.031

  (0.031)
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Table 5  Multiple Output Longitudinal LOES Modeling Results  

Parameter True Value Equation Error
Estimate

(Std. Error)

Output Error
Estimate

(Std. Error)

b1 1.000 0.983

(0.017)

1.005

(0.006)

b0 1.000 0.988

(0.094)

1.010

(0.020)

a1 2.000 1.900

(0.096)

2.001

(0.018)

a0 4.000 4.119

(0.187)

3.998

(0.026)

τ 0.100 0.096

(0.004)

0.100

(0.002)
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Table 6  Longitudinal LOES Modeling Results for Neal-Smith Case 2H  

MDC Bode Plot Estimates

(Ref. [1])

Parameter Equation
Error

Estimate

(Std. Error)

Output Error
Estimate

(Std. Error)

All free

Output Error
Estimate

(Std. Error)

1 125
2

Tθ = . 1 125
2

Tθ = . All free

b1
3.188

(0.271)

4.593

(0.185)

5.848

(0.141)
5.243 3.539

b0
17.08

(1.69)

12.39

(0.730)

7.310

*
6.554 14.44

a1
4.198

(0.208)

4.362

(0.096)

4.643

(0.139)
4.096 3.952

a0
16.10

(1.16)

12.27

(0.552)

8.383

(0.193)
6.554 14.44

τ 0.076

(0.008)

0.110

(0.005)

0.138

(0.004)
0.126 0.098

1
2

Tθ 5.36 2.70 1.25 1.25 4.08

ω sp 4.01 3.50 2.90 2.56 3.80

ζ sp 0.52 0.62 0.80 0.80 0.52

Pred. FQ level /
Pilot FQ level

3/2 2/2 2/2 2/2 3/2

Cost

01 10. ≤ ≤ω
73.3 101.0 252.9 163.4 36.3

Cost

15 6. ≤ ≤ω
9.0 3.9 5.2 42.1 16.7
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Table 7  Longitudinal LOES Modeling Results for Neil-Smith Case 1G  

MDC Bode Plot Estimates

(Ref. [1])

Parameter Equation
Error

Estimate

(Std. Error)

q only

Output Error
Estimate

(Std. Error)

All free

q only

Output Error
Estimate

(Std. Error)

All free

q and α
1 125

2
Tθ = . All free

b1
0.206

(0.054)

9.110e-04

(18.853)

0.618

(0.014)
0.487 0.0136

b0
1.627

(0.208)

2.497

(0.192)

0.596

(0.027)
0.608 2.402

a1
1.989

(0.356)

3.726

(0.269)

1.515

(0.048)
1.154 3.317

a0
2.425

(0.310)

2.938

(0.204)

0.775

(0.024)
0.608 2.402

τ 0.111

(0.024)

0.068

(7.539)

0.258

(0.007)
0.185 0.043

1
2

Tθ 7.907 2741.3 0.965 1.25 176.0

ω sp 1.56 1.71 0.88 0.78 1.55

ζ sp 0.64 1.09 0.86 0.74 1.07

Pred. FQ level /
Pilot FQ level

3/3 3/3 3/3 3/3 3/3

Cost

01 10. ≤ ≤ω
231.5 234.4 3887.0 1933.1 129.1

Cost

15 6. ≤ ≤ω
27.8 26.2 398.8 294.9 26.0
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Table 8  Longitudinal LOES Modeling Results  
for F-18 HARV Longitudinal Tracking Data

Maneuver 376d Maneuver 321e Maneuver 320j

Parameter Estimate
(Standard Error)

Estimate
(Standard Error)

Estimate
(Standard Error)

b1 0.787

(0.103)

0.745

(0.152)

0.638

(0.041)

b0 1.401

(0.493)

3.346

(0.701)

0.451

(0.203)

a1 3.785

(0.678)

4.371

(0.675)

4.670

(0.314)

a0 15.49

(3.39)

33.84

(4.50)

10.30

(1.53)

τ 0.026

(0.018)

0.042

(0.020)

0.236

(0.018)

1
2

Tθ 1.78 4.49 0.71

ω sp 3.94 5.82 3.21

ζ sp 0.48 0.38 0.73

Pred. FQ level /
Pilot FQ level

1/1 2/2 3/3

Table 9  Flight Conditions for F-18 HARV Longitudinal Tracking Data  

Maneuver 376d Maneuver 321e Maneuver 320j

α avg  (deg) 37.8 42.6 33.5

qavg  (psf) 75.3 64.1 73.6

wavg  (lbf) 36,010 38,400 32,930

xcgavg
 (in)

c = 1152.  ft1 6
458.8 456.7 459.5
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Table 10  Lateral/Directional LOES Modeling Results  
for F-18 HARV Flight Test Data

Maneuver 329r

Parameter Estimate
(Standard Error)

Parameter Estimate
(Standard Error)

Parameter Estimate
(Standard Error)

Yβ
–0.073

(0.053)
Lβ

–2.85

(0.17)
Nβ

0.0282

(0.053)

Yp
0.748

(0.024)
Lp

–2.55

(0.09)
N p

–0.169

(0.053)

Yr
–0.690

(0.035)
Lr

2.97

(0.15)
Nr

–0.478

(0.053)

Y
rη

–2.43e-04

(7.30e–05)
Lφ

–0.452

(0.025)
N

rη
2.12e–03

(3.39)

Y
aη

–9.11e-03

(1.64e–03)
L

rη
–5.86e–03

(2.30e–04)
N

aη
0.0888

(3.39)

L
aη

–0.0592

(6.39e–03)
τ r

0.0588

(7.94e–03)

τ a
0.0125

(0.0104)

Modal Parameters

Spiral Mode Roll Mode Dutch Roll Mode

TS 11.5 TR 1.80 ω DR 1.71

ζ DR 0.72
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VIII.  Figures
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Figure 1  Output Error Sensitivities,  
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Figure 2  Output Error Sensitivity  
Correlation Diagram, ~ ~q η  from Eq. (2)

Figure 4  Output Error Sensitivity  
Correlation Diagram, ~ ~q η  from Eq. (14)
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Figure 6  Output Error Sensitivity  
Correlation Diagram, ~ ~q η  from Eq. (1)
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Figure 19  F-18 HARV  
Lateral/Directional Outputs, 45º α
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